// you’re reading...

Research

Data complexity in supervised learning

My thesis, Data complexity in supervised learning: A far reaching implication, is finally available online.

This thesis takes a close view of data complexity and its role shaping the behaviour of machine learning techniques in supervised learning and explores the generation of synthetic data sets through complexity estimates. The work has been built upon four principles which have naturally followed one another. (1) A critique about the current methodologies used by the machine learning community to evaluate the performance of new learners unleashes (2) the interest for alternative estimates based on the analysis of data complexity and its study. However, both the early stage of the complexity measures and the limited availability of real-world problems for testing inspire (3) the generation of synthetic problems, which becomes the backbone of this thesis, and (4) the proposal of artificial benchmarks resembling real-world problems.

The ultimate goal of this research flow is, in the long run, to provide practitioners (1) with some guidelines to choose the most suitable learner given a problem and (2) with a collection of benchmarks to either assess the performance of the learners or test their limitations.

Discussion

Comments are disallowed for this post.

Comments are closed.